
Commutative Algebra Atiyah-MacDonald

1 Chapter 2

1.1 Tensor product

1. Exercise 1. Show that (Z/mZ)⊗Z (Z/nZ) is zero if m,n are coprime.

Exercise 1 solution. It follows quickly from the definition of the tensor product that
0⊗ y = x⊗ 0 = 0 in any tensor product of modules.

Another useful lemma is that if M is a cyclic A-module, i.e. if there is a g ∈ M
such that all x ∈ M have the form ag for some a ∈ A (in which case g is said to
generate M), and N is a cyclic A-module generated by h, then M ⊗A N is a cyclic
A-module and it is generated by g ⊗ h. This is because for any x ⊗ y ∈ M ⊗N , we
have x = ag, y = bh for a, b ∈ A, and then x ⊗ y = ag ⊗ bh = (ab)(g ⊗ h), so that any
element of M ⊗AN of the form x⊗y can be written r(g⊗h) for some r ∈ A. But then
for any ∑i xi ⊗ yi ∈M ⊗A N , we can write ∑i xi ⊗ yi = ∑i ri(g ⊗ h) = (∑i ri) (g ⊗ h).

Because of this lemma, since Z/mZ and Z/nZ are cyclic, generated by 1, (Z/mZ)⊗Z
(Z/nZ) is cyclic and generated by 1 ⊗ 1. But since m,n are coprime, there exist
integers a, b ∈ Z such that am + bn = 1, and then

1⊗ 1 = (am + bn)(1⊗ 1) = am(1⊗ 1) + bn(1⊗ 1) = a(m⊗ 1) + b(1⊗ n) = a0 + b0 = 0

Thus (Z/mZ)⊗Z (Z/nZ) is generated by 0, so it is 0.

2. Exercise 2. Let A be a ring, a an ideal, and M an A-module. Show that A/a⊗AM
is isomorphic as an A-module to M/aM .

Exercise 2 solution. We have an exact sequence of A-modules:

0→ a→ A→ A/a→ 0

By right-exactness of the tensor product, tensoring with M yields the exact sequence

a⊗AM → A⊗AM → (A/a)⊗AM → 0

Now A ⊗A M is canonically isomorphic to M via the map a ⊗ m ↦ am (linearly
extended to all of A⊗M), with inverse given by m↦ 1⊗m. So (via this identification)
we can write

a⊗AM →M → (A/a)⊗AM → 0

What is the image of a⊗AM inside M? It is finite sums of elements of the form am
with a ∈ a. This is precisely the submodule aM . Since the sequence is exact, this is
also the kernel of the map M → A/a⊗AM , which is surjective. Thus (A/a)⊗AM is
canonically isomorphic to M/aM .
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3. Exercise 3. Prove that if A is a local ring, M and N are finitely generated A-modules,
and M ⊗A N = 0, then one of M or N is zero.

Exercise 3 solution. By problem 2, we have M ⊗AA/m =M/mM , so M surjects onto
M ⊗A k (where k = A/m). Similarly for N and N ⊗A k. Thus

M ⊗A N → (M ⊗A k)⊗A (N ⊗A k)

is surjective. Now the module on the right is really a k-module and the tensor product
is really over k, since the tensor product of k-modules over A is really over k since
factors that pull across are in equivalence classes mod m. Thus if M ⊗A N is zero,
then

(M ⊗A k)⊗k (N ⊗A k)

is zero. This is a tensor product of k-vector spaces of finite dimensions (since M,N
are finitely generated), say m and n. Then this has dimension mn = 0. So m = 0 or
n = 0 since Z is a domain! Then M ⊗A k =M/mM = 0 (or similarly for N) implying
that M = mM (or likewise for N). Now the Nakayama lemma applies since M (or
N) is finitely generated and m is the Jacobson radical of A, to show that M = 0 (or
N = 0). This completes the argument.

1.2 Modules

1. Exercise 7. Let p◁A be a prime ideal. Show that p[x] is a prime ideal of A[x]. If
m is maximal in A, is m[x] maximal in A[x]?

Exercise 7 solution. Define the ring homomorphism A[x] → (A/p)[x] in the obvious
way. The kernel of this homomorphism is p[x], because clearly any polynomial with
all coefficients in p gets knocked out, and any polynomial with any coefficient not in
p does not get knocked out. Because A/p is a domain, (A/p)[x] is a domain, and it
follows that the kernel p[x] of this homomorphism is prime.

It does not follow from m maximal that m[x] will be maximal. For a counterexample,
take A = Z, m = (2)◁ Z. Then m[x] = (2)◁ Z[x], but this is properly contained in
(2, x). In terms of our argument above, in general m[x] won’t be maximal in A[x]
because though A/m is a field, (A/m)[x] is not.

2. Exercise 9. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules. If
M ′,M ′′ are finitely generated, so is M .

Exercise 9 solution. The generators of M ′ and any representatives of the generators
for M ′′ form a set of generators for M .
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3. Exercise 10. Let A be a ring, a an ideal contained in the Jacobson radical of A;
let M be an A-module and N a finitely generated A-module; and let u ∶ M → N
be a homomorphism. Show that if the induced homomorphism M/aM → N/aN is
surjective, then u is surjective.

Exercise 10 solution. If M/aM → N/aN is surjective, then every coset of aN contains
an element of imu, thus N = imu + aN . Now apply Nakayama’s lemma, in the form
of Corollary 2.7, to N , to conclude that N = imu.

4. Exercise 11. Let A be a nonzero ring. Show that Am ≅ An ⇒ m = n. Show that if
φ ∶ Am → An is surjective, then m ≥ n. If φ ∶ Am → An is injective, is m necessarily
≤ n?

Exercise 11 solution. It is much easier to prove that isomorphism implies m = n and
surjectivity implies m ≥ n than that injectivity implies m ≤ n, but this last is also
true. Here are proofs:

An isomorphism Am → An fits into an exact sequence

0→ Am → An → 0

Now pick any maximal ideal m of A; then A/m is a field. Right-exactness of the tensor
product, together with the fact that Am ⊗A A/m = (A/m)m, which is a consequence
of problem 2 but is not hard to see directly, gives us an exact sequence

0→ (A/m)m → (A/m)n → 0

which is an isomorphism of finite-dimensional vector spaces over the field A/m. Thus
the dimensions must be equal: m = n.

If φ ∶ Am → An is surjective, we can repeat this same argument except on the exact
sequence

kerφ→ Am → An → 0

obtaining a surjection of (A/m)m onto (A/m)n, and we can conclude m ≥ n.

If φ ∶ Am → An is injective, we do not have access to the same argument, because
the tensor product is not left-exact, precisely because it does not preserve injectivity.
We need another argument.

Suppose for a contradiction that φ ∶ Am → An is injective but has m > n. Com-
pose with the embedding of An in the first n coordinates of Am; thus φ becomes
an endomorphism of Am, and because m > n, its image is always zero in the last
coordinate.
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By Proposition 2.4 (taking a to be all of A), φ satisfies a monic polynomial in the
ring of endomorphisms of Am:

φk + a1φk−1 + ⋅ ⋅ ⋅ + ak = 0

Actually it obeys an ideal of such polynomials; let this be one of minimal degree.
Then, since φ is injective, we cannot have ak = 0. If we did, it would be divisible by
φ, and we would have

φ ○ (φk−1 + a1φk−2 + . . . ) = 0

but φk−1 + a1φk−2 + . . . is not identically zero as an operator, by the minimality
assumption we just made. Thus there exists x ∈ Am with (φk−1 + a1φk−2 + . . . )x ≠ 0.
But then applying φ to (φk−1 + a1φk−2 + . . . )x yields zero. But this contradicts the
assumption that φ is injective. So ak ≠ 0.

But now we have a contradiction. Let ψ = φk + a1φk−1 + ⋅ ⋅ ⋅ + ak. ψ is supposed to be
identically zero as an endomorphism. However, because imφ is all zeros in the last
coordinate, if ψ is applied to any element of Am that has 1 in the last coordinate,
all the φ terms will contribute nothing to this coordinate and it will come out equal
to ak, which we just showed is nonzero. Thus ψ cannot be identically zero as an
endomorphism. This contradiction proves that m ≤ n.

5. Exercise 12. Let M be a finitely generated A-module and suppose that φ ∶M → An

is surjective. Show that kerφ is finitely generated.

Exercise 12 solution. Let u1, . . . , un be preimages for e1, . . . , en. (These exist by
surjectivity.) Let U be the submodule of M generated by u1, . . . , un. We have

φ (∑aiui) =∑aiei

for ai ∈ A, by definition of an A-module homomorphism. Since An is free, every
choice of distinct ai’s yields a different image on the right. Thus every distinct choice
of ai’s yields a distinct element of U , and φ∣U is an isomorphism. We can identify An

with U and think of φ as an endomorphism, and then we have φ2 = φ.

Whenever this condition is met on a map φ, its image U is a direct summand of M .
Indeed, define a new map ψ by ψ(x) = x − φ(x). Linearity of φ implies that of ψ.
Meanwhile we have ψ2(x) = ψ(x−φ(x)) = x−φ(x)−(φ(x)−φ2(x)) = x−φ(x)−0 = ψ(x),
so ψ2 = ψ too, and for x ∈ U we have ψ(x) = x − φ(x) = φ(y) − φ2(y) = 0 for some
y, so that kerψ ⊃ U . Conversely, if y ∈ kerψ, then by definition y − φ(y) = 0, so
that y ∈ U , so kerψ = U . Since this follows from the relations φ2 = φ,ψ2 = ψ and
φ(x) + ψ(x) = x,∀x ∈M , which are symmetric in φ,ψ, the same arguments will give
us, if V = imψ, kerφ = V . We have x↦ (φ(x), ψ(x)) is a homomorphism from M to
U ⊕V , and it is inverted by (u, v)↦ u+ v, so it is an isomorphism. We have proven:
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An idempotent endomorphism is a projection to a direct summand.

Anyway, let m1, . . . ,mk be generators for M . Then since ψ is a surjective homomor-
phism onto V = kerφ, ψ(m1), . . . , ψ(mk) generate V .

1.3 Direct Limit

1. Exercise 14. A poset I is a directed set if every pair of elements has a common upper
bound. Let A be a ring, I a directed system, and (Mi)i∈I a family of A-modules
indexed by I. Suppose that for every pair i, j with i ≤ j, there is a homomorphism
µij ∶ Mi → Mj , such that µii is the identity for all i ∈ I, and the homomorphisms
are compatible with the structure of I: if i ≤ j ≤ k, then µik = µjk ○ µij . Then
M = (Mi, µij) is a direct system over I. It has a direct limit

M = limÐ→Mi

which is an A-module, defined as the quotient of ⊕i∈IMi by the submodule generated
by identifying every element of every Mi with its image under any of the µij . (Call
this submodule D.) Each Mi has a canonical homomorphism µi to M by restricting
the canonical homomorphism on the whole direct sum toMi. Call the whole canonical
homomorphism µ.

Exercise 14 solution. This exercise does not really give the reader anything to do .

Here are some examples of this construction (requiring varying amounts of back-
ground):

(a) Let A = Z, let I = N with the canonical ordering, and let each Mi be isomorphic
to Z, with µi(i+1) being multiplication by 2 every time. Then limÐ→Mi is, as an
abelian group i.e. a Z-module, the rational numbers with denominators a power
of 2. Each Mi can be thought of as Z/2i−1.

(b) Similarly, take the same A and I and again let each Mi ≅ A, but this time order
I by divisibility, so i ≤ j means i ∣ j. For i ∣ j, let µij be multiplication by j/i.
Now limÐ→Mi is the additive group of Q, and Mi can be thought of as Z/i.

(c) Let M be a module; let I be the family of finitely generated submodules of M ,
ordered by inclusion. Then i ≤ j means i ⊂ j; let µij be the embedding i ↪ j.
Then Mi = i, and limÐ→Mi =M . See problem 17.

(d) The stalk of a sheaf of functions over a point is the direct limit of the ring of
functions on each open set containing the point, ordered by reverse inclusion of
the sets. Here we have a topological space X with a sheaf of functions OX , and
a point p ∈X. I is the family of open sets of X containing p, ordered by reverse

Ben Blum-Smith and Carlos Ceron 5



Commutative Algebra Atiyah-MacDonald

inclusion. Mi = OX(i) is the family of functions on the open set i. j ≥ i means
j ⊂ i, and µij is the restriction map restricting functions from i to j; the kernel
is the set of functions that are zero on j. limÐ→OX(i) = OX(p) is, by definition,
the stalk over p.

2. Exercise 15. Show that every element of limÐ→Mi can be written µi(xi) for some xi ∈Mi

for some i ∈ I. (“Everybody in the direct limit is represented by somebody in one of
the Mi’s.”) Also show that if µi(xi) = 0, then there exists j ≥ i such that µij(xi) = 0
in Mj . (“If you are zero in the direct limit, you were zero in one of the Mi’s.”)

Exercise 15 solution. Prima facie, each element of M = limÐ→Mi is a sum of finitely
many elements of the form µi(xi) for varying i’s. We will induct on the number of
terms in the sum. The key case is two. Say x ∈M equals µi(xi) + µj(x′j). Because I
is a directed system, we have k ≥ i, j. Consider yk = µik(xi) and y′k = µjk(x

′
j). By the

construction of M , yk and xi have the same images in M and so do y′k and x′j . Because
yk, y

′
k ∈Mk, we can add them: xk = yk+y′k. I claim that µk(xk) = µi(xi)+µj(x′j) in M .

Indeed, µk(xk) = µ(xk) = µ(yk+y′k) = µ(yk)+µ(y
′
k) = µ(xi)+µ(x

′
j) = µi(xi)+µj(x′j) =

x. So if x has a representation in terms of two µi(xi)’s, then it has a representation
in terms of one. A sum with arbitrary finite number of terms follows immediately by
induction.

Proving that if µi(xi) = 0 in M then there exists j ≥ i such that µij(xi) = 0 in Mj

takes substantially more work but the work pays off in a richer understanding of the
direct sum construction:

We will define a prima facie different A-module M∗ from the union (rather than the
direct sum) of the Mi’s. We will then show it is isomorphic to M . We will answer
the question by reasoning about M∗.

M∗ is defined as follows: start with the set ⋃i∈IMi, and quotient by the relation
that xi ∈ Mi and xj ∈ Mj are equivalent if there is some k lying over i, j such that
µik(xi) = µjk(xj). Represent classes in M∗ by [xi]. Now impose a module structure
on M∗: define a[xi] = [axi]. It is clear that this is well-defined: if xi ∼ xj then ∃k such
that µik(xi) = µjk(xj). In which case, aµik(xi) = aµjk(xj), so µik(axi) = µjk(axj),
so axi ∼ axj . Now define [xi] + [xj] = [µik(xi) + µjk(xj)] for some k lying over i, j.
(Here we are making heavy use of the fact that I is a directed set.) To see that this
doesn’t depend on the choice of k, consider that for any two k, k′’s lying over i, j,
there is m lying over both of them, and that we have

µkm (µik(xi) + µjk(xj)) = µim(xi) + µjm(xj) = µk′m (µik′(xi) + µjk′(xj))

To see that it doesn’t depend on the choice of representatives for [xi], [xj] consider
that if xi ∼ xk and xj ∼ xl, i.e. there exist p above i, k and q above j, l such that
µip(xi) = µkp(xk) and µjq(xj) = µlq(xl), and r, s lie above i, j and k, l, respectively,
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we can choose t lying above all these things and then

µrt (µir(xi) + µjr(xj)) = µit(xi) + µjt(xj)
= µpt(µip(xi)) + µqt(µjq(xj))
= µpt(µkp(xk)) + µqt(µlq(xl))
= µkt(xk) + µlt(xl)
= µst (µks(xk) + µls(xl))

Thus, [xi] + [xj] ∼ [xk] + [xl]. We have shown that addition is well-defined on M∗;
it now has an A-module structure.

There is a natural map fromM∗ into the direct limitM defined by Atiyah-MacDonald:
φ ∶ M∗ → M = ⊕i∈IMi/D given by φ([xi]) = µ(xi) = µi(xi). We claim it is an iso-
morphism. There are several things to check:

(A) It is well-defined. This is the claim that if xi ∼ xj , then µ(xi) = µ(xj). Indeed, D
contains both xi − µik(xi) and xj − µjk(xj) for any xi, xj and k lying over i, j. So if
µik(xi) = µjk(xj), it also contains xi −µik(xi)− [xj −µjk(xj)] = xi −xj . Thus if xi, xj
are equivalent in M∗, their images in M are equivalent: µ(xi)−µ(xj) = µ(xi−xj) = 0.

(B) It is an A-module homomorphism. Compatibility with scalar multiplication is
obvious. Compatibility with addition is as follows:

φ([xi]) + φ([xj]) = µ(xi) + µ(xj)
= µi(xi) + µj(xj)
= µk(µik(xi)) + µk(µjk(xj))
= µ (µik(xi) + µjk(xj))
= φ ([µik(xi) + µjk(xj)])
= φ([xi] + [xj])

where k is some element of I lying over i, j.

(C) It is injective and surjective. Surjectivity was essentially what was proven in the
first part of this problem, but we can get both it and injectivity out of the same
device here. Consider the diagram

M∗ → M
↖ ↑

⊕i∈IMi

where φ is the map M∗ → M , the up arrow is the canonical homomorphism with
kernel D, which we will call π, and the diagonal arrow is defined by

∑
i

xi ↦∑
i

[xi]
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Let us call this map ψ. It is more or less immediate that ψ is surjective and that the
diagram commutes, i.e. π = φ○ψ. Since π is surjective, commutativity of the diagram
implies that φ is surjective. This proves surjectivity. Commutativity of the diagram
also implies that kerψ ⊂ kerπ =D. However, by a straightforward calculation we also
have kerψ ⊃ D. For kerψ includes all the generators of D: such a generator has the
form xi − µij(xi), but taking k = j we have µij(xi) = µjj(µij(xi)) since µjj = id.. So
xi and µij(xi) represent the same class in M∗, and we have

ψ(xi − µij(xi)) = [xi] − [µij(xi)] = 0

Since kerψ contains all D’s generators, it contains D. This proves equality. Thus,
M∗ is isomorphic to M = ⊕i∈IMi/D, and φ is the isomorphism. (To spell out the
injectivity argument, if φ had a nontrivial kernel, then since ψ is surjective, it would
correspond to a submodule of⊕Mi properly containing kerψ =D; thus the composed
map φ ○ ψ would have a kernel bigger than D. But we know the kernel is exactly D
because this composed map is π.)

Anyway, this isomorphism gets the result of the problem with almost no additional
work. We may as well move the conversation to M∗, and here, by definition of M∗,
[xi] = [0] if and only if there exists j such that µik(xi) = µjk(0) = 0 in Mk. This is
what was to be shown.

3. Exercise 16. Show that the direct limit has, and is characterized up to isomorphism
by, the following universal property. Let N be an A-module and for each i ∈ I let
αi ∶Mi → N be an A-module homomorphism such that αi = αj ○ µij whenever i ≤ j.
Then there exists a unique homomorphism α ∶ M → N such that αi = α ○ µi for all
i ∈ I.

Exercise 16 solution. Let N,αi be such a module-and-homomorphisms.

First we show that for each i ∈ I, αi factors through µi. To prove this, we have to
show that kerµi ⊂ kerαi. But this is clear. If xi ∈ Mi is in kerµi, this means by
the last problem that there exists j so that µij(xi) = 0. But since αi = αj ○ µij , we
have αi(xi) = αj(µij(xi)) = αj(0) = 0, so that xi ∈ kerαi. Thus, αi ∶Mi → N factors
through µi, i.e. there exists a unique homomorphism, call it βi, from imµi ⊂ M to
N , such that αi = βi ○ µi.

Secondly, we show that the βi’s all agree where they overlap. In other words, if
x ∈ M is in both imµi and imµj , then βi(x) = βj(x) in N . We see this as follows:
x ∈ imµi ∩ µj implies there exists xi ∈Mi and xj ∈Mj such that µi(xi) = µj(xj) = x.
But then, by our work in the last problem, this means that there exists k over i, j
such that µik(xi) = µjk(xj). Then

αi(xi) = αk ○ µik(xi) = αk ○ µjk(xj) = αj(xj)
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in N . But the construction of the βi’s means that αi(xi) = βi ○ µi(xi) = βi(x), and
similarly for xj , thus

βi(x) = αi(xi) = αj(xj) = βj(x)
So the βi’s agree where they overlap. Since by our work in the last problem, the
imµi’s cover M , this means that the βi’s give us a well-defined map from M to N .
Call this map α. We claim it is the desired homomorphism M → N .

There are two things to check: first, that it is indeed an A-module homomorphism.
Second, that it has the desired property that αi = α ○ µi for all i.

To see it is an A-module homomorphism, take any two elements x, y ∈M ; since the
imµi’s cover M by the last problem, we may assume x ∈ imµi and y ∈ imµj for some
i, j ∈ I. Take a k ∈ I over i, j; then x, y are both in imµk since µk ○ µik = µi implies
imµk ⊃ imµi and similarly µk ○ µjk = µj implies imµk ⊃ imµj . But βk is then a
homomorphism from the submodule imµk of M containing both x and y, to N , and
it is the restriction of α to this submodule by construction of α. Thus, for a, b ∈ A,
we have ax + by ∈ imµk ⊂M , thus

α(ax + by) = βk(ax + by) = aβk(x) + bβk(y) = aα(x) + bα(y)

This establishes that α is a homomorphism of A-modules.

To see that αi = α ○ µi, consider only that α’s restriction to imµi is βi by the
construction of α, so α ○ µi = βi ○ µi = αi, by the construction of βi.

This establishes that the unique homomorphism α exists from the direct limit limÐ→Mi =
M to N .

For uniqueness up to isomorphism, let M ′ be a second A-module, and µ′i a second set
of homomorphisms Mi →M ′, such that for all A-modules N and homomorphisms αi ∶
Mi → N such that αi = αj ○ µij whenever i ≤ j, there exists a unique homomorphism
α′ ∶M ′ → N such that αi = α′ ○ µ′i. In particular, taking N =M , we find that there
exists a unique homomorphism µ′ ∶M ′ →M such that for each µi we have µi = µ′○µ′i.

I claim µ′ is an isomorphism. Indeed, by M ’s universal property we get µ mapping
M →M ′, and they are clearly inverses. For the composition µ○µ′ is a map M ′ →M ′

with the specified properties, thus it must be the unique one (using M ′’s unversal
property and taking N =M ′), but meanwhile the identity also satisfies the properties,
so we must have µ ○ µ′ = id.; and similarly for µ′ ○ µ.

4. Exercise 17. Let {Mi}i∈I be a family of submodules of an A-module M such that for
any i, j ∈ I there exists k ∈ I such that Mi +Mj ⊂ Mk. Define i ≤ j if Mi ⊂ Mj . In
this way I becomes a directed set. Define µij as the inclusion map of Mi in Mj . In
this way the Mi, µij become a direct system. Show that

limÐ→Mi =∑Mi =⋃Mi
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Deduce that in particular, any A-module is the direct limit of its finitely generated
submodules.

Exercise 17 solution. Since for any i, j there exists k such that Mi +Mj ⊂Mk, ⋃Mi

is closed under sums, so that ∑Mi ⊂ ⋃Mi ⊂ ∑Mi so we have equality between these
and it just needs to be shown that they are the same as the direct limit.

But this is clear from our work in problem 15, where it is shown that the direct
limit is the union modulo equality in some common upper bound module. Here, this
translates to equality in M : given xi ∈Mi and xj ∈Mj , if there exist k,µik, µjk such
that µik(xi) = µjk(xj), then since all the µij are inclusions, we must have xi = xj as
elements of Mk ⊂M . Conversely, if xi and xj are equal as elements of M , then since
there exists k with Mi +Mj ⊂ Mk we have µik(xi) = µjk(xj). So the direct limit is
precisely the union here.

Now let M be any A-module. The set of finitely generated submodules Mi clearly
satisfies the above, since the sum of finitely generated modules is finitely generated.
Since every element of M is contained in some finitely generated submodule (e.g. the
cyclic module generated by itself), we have M = ⋃Mi, and the above result applies.

5. Exercise 18. Let M = (Mi, µij) and N = (Ni, νij) be two different direct systems of A-
modules over the same directed set I. A homomorphism Φ ∶ M→N of direct systems
is defined in the natural way. It is a family of module homomorphisms φi ∶Mi → Ni

that commute with the µij , νij . I.e., given i, j with i ≤ j, φi, φj satisfy νij ○φi = φj ○µij .
Show that a homomorphism of direct systems Φ induces a unique homomorphism
φ = limÐ→φi of the direct limits that commutes with the projections µi, νi, i.e. such
that for all i, φ ○ µi = νi ○ φi.

Exercise 18 solution. Let N = limÐ→Ni. Let αi = νi ○ φi. Then for each i ∈ I, αi maps
Mi to N such that for any j ≥ i we have

αi = νi ○ φi
= νj ○ νij ○ φi
= νj ○ φj ○ µij
= αj ○ µij

so that by the universal property of M = limÐ→Mi discussed in the last problem, we get
a unique homomorphism α ∶M → N satisfying αi = α ○ µi for each i ∈ I. Let φ = α.
Then we have

φ ○ µi = αi = νi ○ φi
so that φ so defined has the desired property.
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